Environmental Persistence of Brucella in the Greater Yellowstone Area

Principal Investigators:

Keith Aune WCS

Dr. Jack Rhyan USDA/APHIS/VS

Robin Russell MFWP

Dr. Tom Roffe USFWS

Dr. Barbara Corso USDA/APHIS/CEAH

Cooperators:

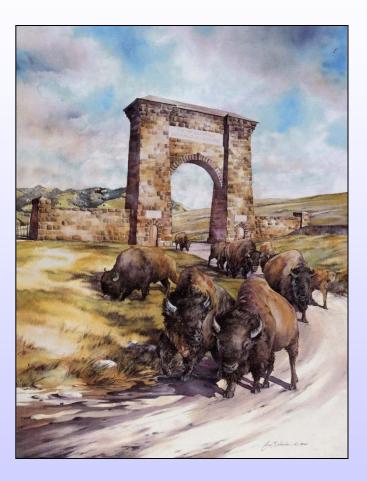
Mt. Dept. Fish, Wildlife and Parks

National Park Service-Yellowstone National Park

USDA/APHIS/Veterinary Services

USGS/Biological Resources Division

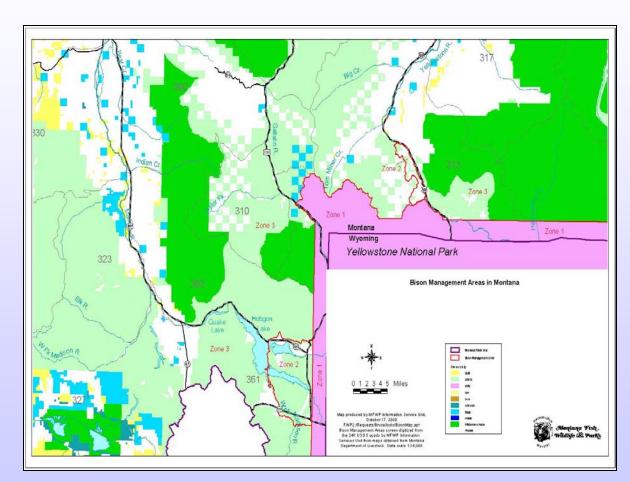
US Forest Service


Montana Department of Livestock

Munz Family

Royal Teton Ranch

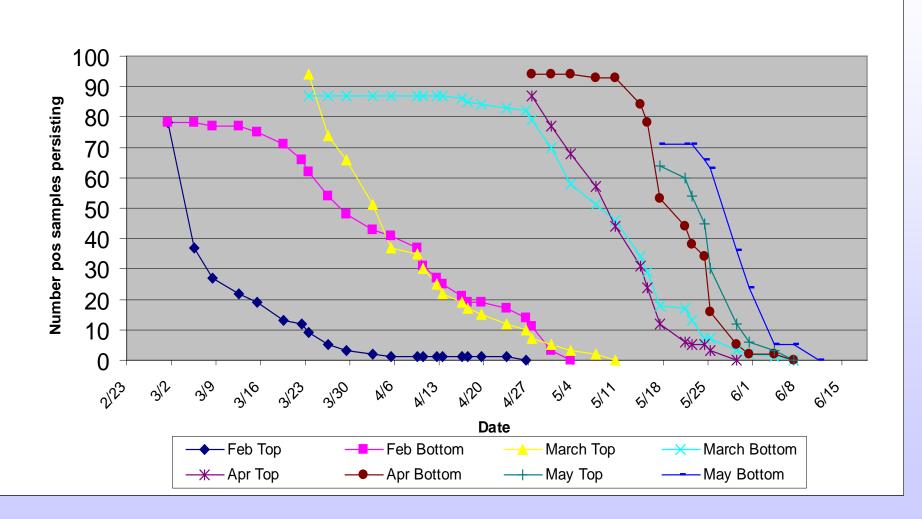
Three Related Study Elements


- Persistence of RB51 in fetal tissues under natural conditions typical of the Greater Yellowstone Area
- Disappearance of fetuses due to scavenging or natural decomposition in the Greater Yellowstone Area
- Persistence of field strain B.
 abortus in abortion or birth
 events in the Greater
 Yellowstone Area

RB 51 Persistence and Fetal Disappearance Study

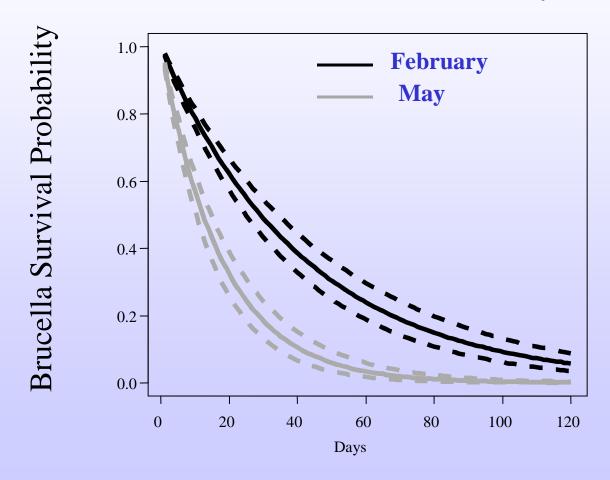
- Study was developed as a result of the Interagency Bison Management Plan record of decision signed in December, 2000.
- The bison plan recommends this research to provide accurate scientific data for determining the appropriate temporal separation period for bison and cattle in the Greater Yellowstone Area.
- First year study design was a pilot effort to explore field methodologies. The second and third years implemented these methodologies.
- Objectives of the study are:
 - Using RB51 strain brucella- model the persistence of the bacteria on fetal tissues
 - Using appropriately placed bison fetuses from slaughter plants-model field abortions and establish the time period before they are naturally scavenged in the environments adjacent to Yellowstone National Park.

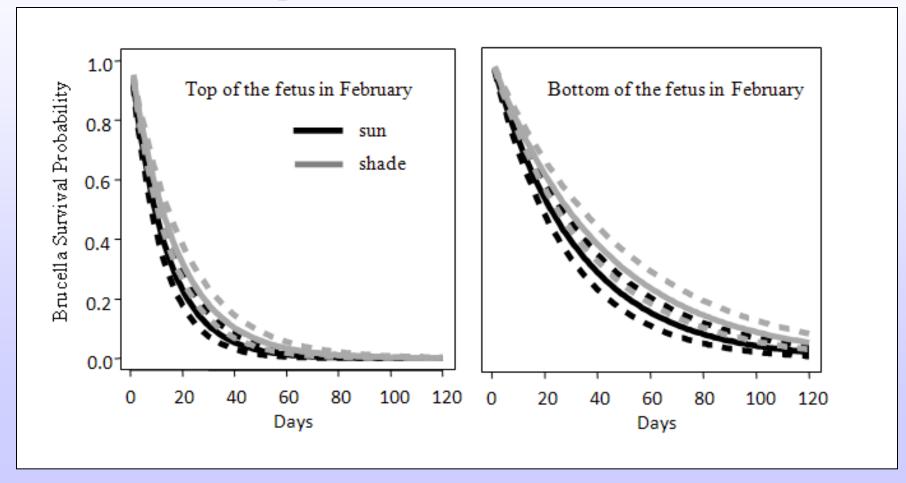
Study Areas


- Two study sites were selected-Gardiner and West Yellowstone as points of exodus for migrating bison from YNP.
- Each has unique environmental conditions that could contribute to differences in the survival of the bacteria *Brucella*

RB51 Persistence Study Site-West Yellowstone **UV-Weather Station**

RB51 Persistence Study Site-Gardiner, Montana

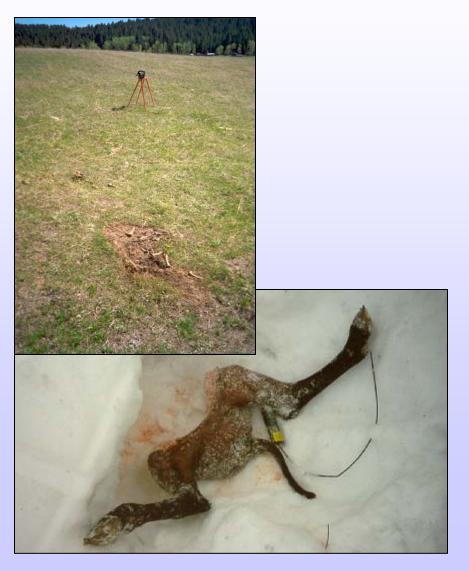



Cox Proportional Hazards Model of Persistence of RB51

In Shade-Feb and May

Cox Proportional Hazards Model for Persistence of RB51

Top Versus Bottom of Fetus



Maximum Length of Brucella Survival by Month of Deployment

		Т	ОР	ВОТ	ГТОМ	SWAB		
		Observed	Predicted	Observed	Predicted	Observed	Predicted	
Month	N	Max. Days	Median	Max. Days	Median	Max. Days	Median	
			(95%CI)		(95%CI)		(95%CI)	
Feb.	96	67	12 (10-15)	77	24 (29-34)	81	22 (19-26)	
Mar.	96	49	15 (13-17)	77	33 (38-39)	63	26 (21-30)	
April	96	42	11 (10-13)	69	26 (21-30)	44	20 (17-24)	
May	88	21	6 (5-7)	24	13 (11-15)	25	10 (8-12)	

Fetal Disappearance Study 2001

Gardiner and West Yellowstone

- We deployed 94 fetuses at two study sites. Sets of 16 fetuses were set out in March, April and May 2001.
- 61 were placed on a 1 km. grid within YNP near Gardiner and West Yellowstone in 2001.
 - 33 were placed on private land in an optimal grid pattern maintaining 0.5 km spacing-Munz (West) and RTR (Gardiner).
- Approximately half were monitored with motion sensing cameras equally distributed among stations.
- Carcasses were fitted with small transmitters to track movement upon scavenging.

Fetal Disappearance Study 2002-03

Gardiner and West Yellowstone

- We deployed 88 fetuses in 2002 and 84 fetuses in 2003, March April and May.
- Carcasses were placed out 4 per week
- Sites were outside YNP and were selected with a stratified random process
 - At elevations and in habitats used by radio collared bison 1995-2000.
- Placed out in-utero with fluids and membranes.
- Fitted with transmitters.
- Data on the presence or absence of bison and other wildlife were recorded upon deployment.

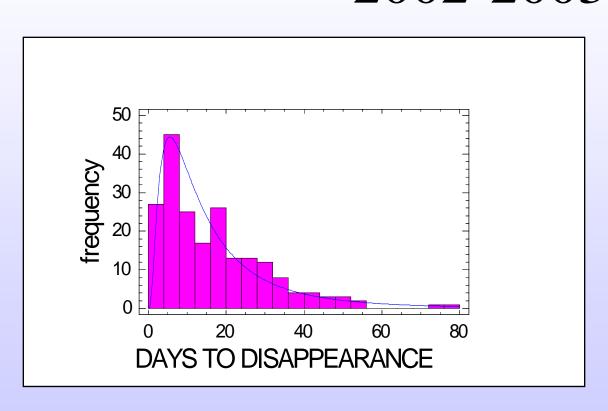
Scavengers Identified

- Coyotes
- Fox
- Bears
- Wolves
- Mtn. Lion
- Ravens
- Eagles
- Turkey Vulture
- Magpie
- Hawks
- Skunk
- Marten

Scavenging Activity Notes

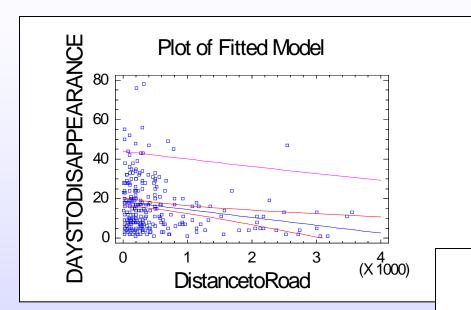
- Transmitters indicated scavengers carried off portions of carcasses.
 - 106/204 (51.9%) moved at least
 100 feet from deployment site.
 - Max Distance moved was 2 miles
 - One moved on Hebgen Lake Ice
 - One went across Hebgen Lake
 - Movement was detected between public and private land
- Portions of carcasses were cached.
 - In trees
 - Buried in soil
 - In Dens
- Most of the scavenging by mammals was at evening or night while birds scavenged during the daylight hours.

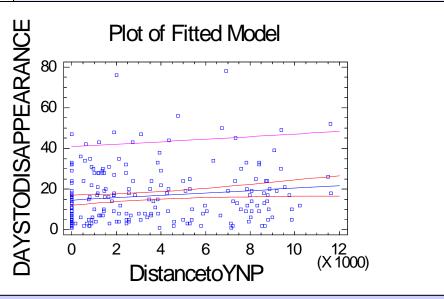
Other Species Interacting with Fetuses



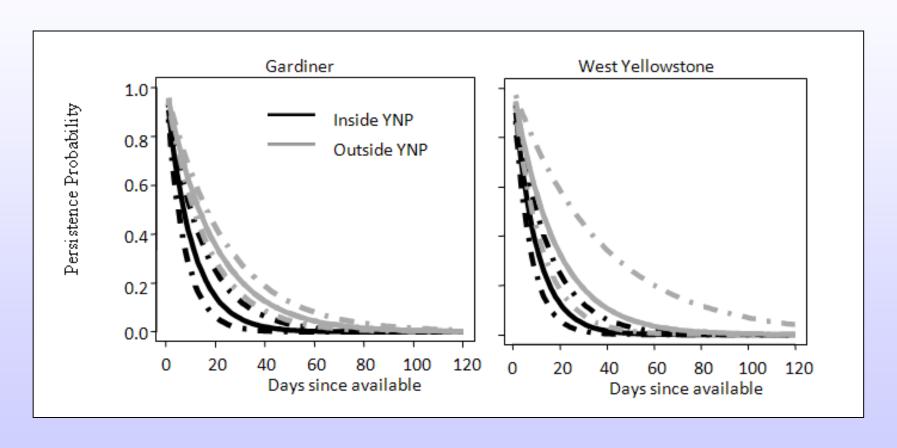
- Bison commonly investigated sites and frequently made physical contact with fetuses.
- Other species coming into close contact with fetuses include:
 - Elk
 - Mule Deer
 - Antelope
 - Jack Rabbits
 - Canada Geese

Distribution of the Days to Disappearance Data Outside YNP 2002-2003

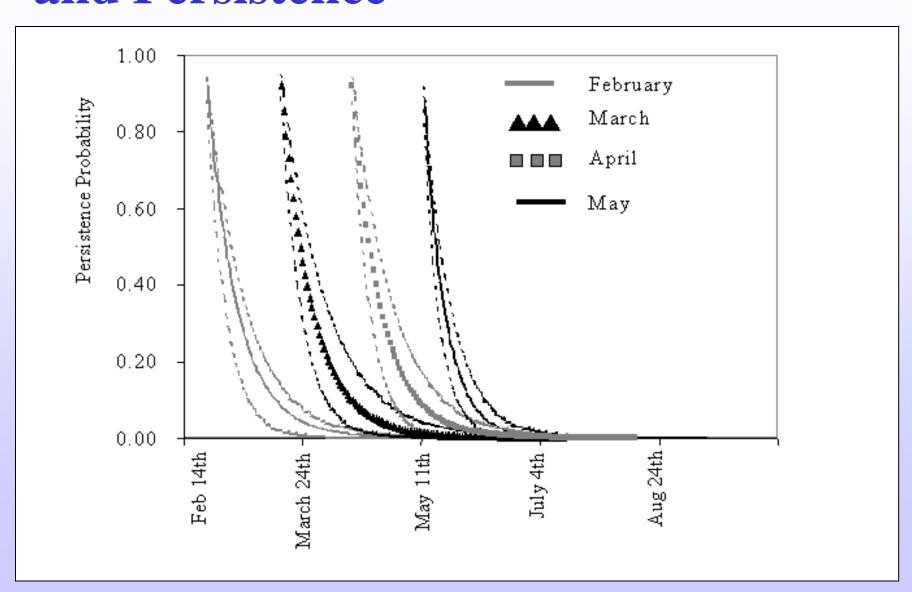



- N=204
- Range 1-78
- Mean 18.23
- S.D.=20.1
- Outliers represent fetuses not scavenged but decomposing on north boundary

The maximum number of days that a fetus remained on the landscape and the latest date until it was completely scavenged outside of YNP.


Month	2001		2002			2003			All Years			
	N	Max.	Date	N	Max.	Date	N	Max.	Date	N	Max.	Date
March	5	47	<u>4/26</u>	16	78	<u>5/5</u>	16	55	<u>4/15</u>	37	78	<u>5/5</u>
April	4	43	<u>5/6</u>	20	48	<u>6/4</u>	20	52	<u>6/2</u>	44	52	<u>6/4</u>
May	5	29	<u>6/7</u>	8	19	<u>5/28</u>	8	29	<u>6/4</u>	21	29	<u>6/7</u>

Disappearance Data Regressions Against Roads and YNP



Model for Fetal Disappearance Inside and Outside of YNP

Combined Model for Disappearance and Persistence

Characteristics of 152 Birth-Site Investigations

Implant	Chance	Birth F	Ejection	Unmarked	Marked	`	
						Sero-status Marked	
						Pos	Neg
75	77	96	56	64	88	33	55
49.3%	50.7%	63.2%	36.8%	42.1%	57.9%	37.5%	62.5%

Year and month that birth or abortion sites were investigated 1996-2002.

Year	1996	1997	1998	1999	2000	2001	2002	<u>Total</u>
Feb	0	0	0	1	0	0	0	<u>1</u>
Mar	0	1	0	3	1	2	0	<u>7</u>
Apr	1	2	5	11	7	19	5	<u>50</u>
May	5	8	11	13	10	12	12	<u>71</u>
June	0	5	2	1	2	6	2	<u>18</u>
July	0	0	4	1	0	0	0	<u>5</u>
TOTAL	6	16	22	30	20	39	19	<u>152</u>

Culture Positive Sites 1996-2002

- 14 of 152 were positive for B. abortus BV1 (9.2%)
 - 2 of 56 ejection sites (3.6%)
 - 12 of 96 birth-sites (12.5%)
- A fetus was located on 6 of 12 birth-sites.
- Tissues, soil or vegetation were found to be positive depending upon sites.
- All cultures were *Brucella* abortus biovar 1

Persistence of Brucella at Field Sites

- Persistence was determined for 9 of 14 positive birthsites.
 - 5 Other sites were sampled only one time for various reasons.
 - These sites were lost due to rain, snow, floods, or trampling,
- April Sites (N=6)
 - Persisted from 10-43 days
- May Sites (N=3)
 - Persistence from 7-26 days

Conclusions

- Using RB51 as a surrogate for field strain we found that Brucella can persist on fetal tissue exposed to natural conditions in the GYA.
 - RB51 persisted longer on the bottom of fetuses and those protected by shade
 - The length of time that RB51 persisted idecreased from February through May.
 - RB51 in tissues placed out in mid-May did not persist very long (25 days)
 - None of the RB51 laced fetuses in this study were culture positive after June 15.
- Scavenging resulted in the rapid removal of most fetuses
 - Fetuses were scavenged more quickly inside YNP than outside
 - Almost all Fetuses were scavenged within 40 days
 - However, some fetuses were not scavenged at all and naturally decomposed.
- The Combined model predicts only a 5% chance that the bacteria or fetus persists in the landscape after 26 days in May events
- Soil/vegetation/tissue at birth or abortion sites naturally infected with field strain remain infected for up to 43 days in April and 26 days in May.
 - Although sample size is small birth-sites mimics persistence data for RB51.
- Evidence from these studies indicates that after May 15 (bison haze-back date in the IBMP), natural environmental conditions and scavenging conspire to rapidly kill or remove brucella from the environment.

Acknowledgements

USDA/APHIS:

Mike Philo, Ryan Clarke, Becky Frey, Matt McCollum, Bill Quinn, Sara Coburn, Steve Olson, Barbara Martin, Darla Ewalt, Janet Payeur

U.S.Geological Service:

Lee Jones, Steve Sweeney, Ken Coffin

Mt. Fish, Wildlife and Parks:

Neil Anderson, Phil Schladwieler, Bob Crawford, Colleen O'Rourke, Eric Ellis

Mt. Dept. Livestock:

Tom Linfield, William Layton

National Park Service:

Wayne Brewster, John Mack, Glen Plumb

U.S. Forest Service:

Stan Bennes, Claude Coffin

Thank You!

R

American Bison

Status Survey and Conservation Guidelines 2010

Edited by C. Cormack Gates, Curtis H. Freese, Peter J.P. Gogan, and Mandy Kotzman

ABS WORKING PAPER NO. 3 | JANUARY 2010

A REVIEW OF BEST PRACTICES AND PRINCIPLES FOR BISON DISEASE ISSUES: Greater Yellowstone and Wood Buffalo Areas

By John S. Nishi